If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-583=0
a = 2; b = 4; c = -583;
Δ = b2-4ac
Δ = 42-4·2·(-583)
Δ = 4680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4680}=\sqrt{36*130}=\sqrt{36}*\sqrt{130}=6\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{130}}{2*2}=\frac{-4-6\sqrt{130}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{130}}{2*2}=\frac{-4+6\sqrt{130}}{4} $
| 8(u+4)-3u=-3 | | 1/2x-9=1/5x+9 | | 8(2x+3)=7x+6 | | 3-5h=-12 | | 37=8p-19 | | 1/2a-1=1/4a+3/4 | | 9+n=72 | | 45+5x+2x=115 | | 2x2/2+9=3/2 | | 5a=-40a | | -18=6(w-7)-2w | | 3x+28=7x+13 | | −9−3x=27 | | 7=3(5+r) | | 2x^2+28x-190=0 | | 10.00+0.75x=15.00+0.50x | | 30=12+9p | | 4/6=x/150 | | 9w+18=90 | | -9+9f=8ff= | | 0.023+x=0.069 | | 6v−–17=95 | | 4(x+3)−6=10 | | 180-45+2x=x | | -9g-5=-10gg= | | 2g-26=68 | | -4(p-213)=44 | | -2x+8=3x+-6 | | 3(3x-6)=181 | | 5(3x–2)=5(4x+1) | | 2g−26=68 | | 2x-12=-3-x |